# NETI – Network Inference Version 1.2 User Manual Copyright (C) 2004-2007 Institute Curie. All rights reserved.

NETI download page: http://bioinfo.curie.fr/projects/reverse-engineering/

Author(s): Eugene Novikov (Institut Curie) E-mail: <u>Eugene.Novikov@curie.fr</u>

### System Requirements

NETI is written in Java and C++. It runs on Windows platforms 95/98/Me/NT/2000/XP and needs the Java Runtime Environment (JRE) to be installed:

http://www.java.com/en/download/

### Installation

NETI can be downloaded from the NETI download page http://bioinfo.curie.fr/projects/reverse-engineering/

Click NETI Setup 1.2.exe to start the NETI 1.2 installer and follow the instructions\*.

NETI 1.2 installation creates a "Curie/NETI 1.2" folder in the list of Programs of the Windows Start menu. This new folder contains the following entries:

- NETI 1.2 starts Network inference software;
- User Manual is a user manual pdf file;
- Uninstall NETI will remove NETI from your computer.

Installation procedure may also create a "NETI 1.2" icon on your Desktop.

\*) Installation procedure asks about the default size of the JVM (Java Virtual Machine) memory allocation pool. It is recommended to set it as large as possible, but not larger than the amount of available RAM.

Network Inference

### **Processing Window**

Data can be downloaded using the "Load Data …" button from the Toolbar or the Menu Item "File|Load|Data …" (Ctrl+O).

See next page for examples of the input data formats.



## Input Data Format

#### Without standard errors:

| Header      | Time | x0      | x1      | x2          | x3                | x4      | x5      |  |
|-------------|------|---------|---------|-------------|-------------------|---------|---------|--|
| Sample      | ;    | 0       | 1.0101  | 2.0202      | 3.0303            | 4.0404  | 5.05051 |  |
| E1          | 0    | 0.00003 | 0.00003 | 0.00003     | 0.00003           | 0.00003 | 0.00003 |  |
| E2          | 1    | 0.0003  | 0.0003  | 0.0003      | 0.0003            | 0.0003  | 0.0003  |  |
| KKK         | 2    | 0.003   | 0.00296 | 0.00291     | 0.00287           | 0.00284 | 0.0028  |  |
| P_KKK       | 3    | 0       | 0.00001 | 0.00002     | 0.00003           | 0.00003 | 0.00004 |  |
| KK          | 4    | 1.2     | 1.19743 | 1.1904      | 1.17974           | 1.16613 | 1.15009 |  |
| P_KK        | 5    | 0       | 0.00253 | 0.00948     | 0.01994           | 0.03313 | 0.0484  |  |
| PP_KK       | 6    | 0       | 0       | 0.00001     | 0.00004           | 0.00012 | 0.00026 |  |
| K           | 7    | 1.2     | 1.19999 | 1.19985     | 1.19931           | 1.19795 | 1.19533 |  |
| P_K         | 8    | 0       | 0.00001 | 0.00008     | 0.00038           | 0.00114 | 0.00259 |  |
| PP_K        | 9    | 0       | 0       | 0           | 0                 | 0       | 0.00001 |  |
| KPase       | 10   | 0.12    | 0.12    | 0.11997     | 0.11985           | 0.11955 | 0.11897 |  |
| P_KKK_KK    | 11   | 0       | 0.00003 | 0.00007     | 0.0001            | 0.00013 | 0.00015 |  |
| PP_KK_KK    | 12   | 0       | 0       | 0.00003     | 0.00016           | 0.00046 | 0.00104 |  |
| KPase_PP_KK | 13   | 0       | 0       | 0           | 0                 | 0       | 0       |  |
|             | · ·  | · ·     | · ·     | · · · · · · | · · · · · · · · · | · ·     | ·       |  |

### With standard errors (SE is indicated in the table cell [1;1]):

| Header      | Time | x2         | SE x2             | x10         | SE x10    | x13               | SE x13    |  |
|-------------|------|------------|-------------------|-------------|-----------|-------------------|-----------|--|
| Sample      | SE;  | 2.0202     | 2.0202            | 10.10101    | 10.10101  | 13.13131          | 13.13131  |  |
| E1          | 0    | 3.02E-05   | 1.50E-06          | 3.00E-05    | 1.50E-06  | 3.15E-05          | 1.50E-06  |  |
| E2          | 1    | 2.79E-04   | 1.50E-05          | 2.87E-04    | 1.50E-05  | 3.18E-04          | 1.50E-05  |  |
| ККК         | 2    | 0.00286195 | 1.45E-04          | 0.00250212  | 1.32E-04  | 0.00260262        | 1.28E-04  |  |
| P_KKK       | 3    | 2.14E-05   | 1.00E-06          | 6.97E-05    | 3.50E-06  | 9.56E-05          | 4.50E-06  |  |
| KK          | 4    | 1.21922989 | 0.05952           | 1.06178469  | 0.052231  | 1.00851474        | 0.048417  |  |
| P_KK        | 5    | 0.00993045 | 4.74E-04          | 0.13696104  | 0.007016  | 0.18396007        | 0.0098425 |  |
| PP_KK       | 6    | 9.74E-06   | 5.00E-07          | 0.00265924  | 1.49E-04  | 0.00669657        | 3.58E-04  |  |
| K           | 7    | 1.18169628 | 0.0599925         | 1.14199093  | 0.057234  | 1.0437543         | 0.0529535 |  |
| P_K         | 8    | 8.16E-05   | 4.00E-06          | 0.03169311  | 0.0015605 | 0.08431202        | 0.0040365 |  |
| PP_K        | 9    | 0          | 0.01              | 8.49E-04    | 4.20E-05  | 0.00607996        | 3.06E-04  |  |
| KPase       | 10   | 0.11832766 | 0.0059985         | 0.11307701  | 0.0054215 | 0.08518873        | 0.004654  |  |
| P_KKK_KK    | 11   | 7.16E-05   | 3.50E-06          | 2.27E-04    | 1.25E-05  | 2.92E-04          | 1.45E-05  |  |
| PP_KK_KK    | 12   | 2.96E-05   | 1.50E-06          | 0.0103351   | 5.69E-04  | 0.02333924        | 0.0012625 |  |
| KPase_PP_KK | 13   | 0          | 0.01              | 0           | 0.01      | 0                 | 0.01      |  |
|             | 1    |            | · · · · · · · · · | · · · · · · | · 1       | · · · · · · · · · |           |  |

## Table View

|                           | WETI12 - D:\InWork\Software\Setup\WWW_RE\demod                                                                      | ata\MAPKDist | orted.bin |               |             |                |                    | l.         |          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------------|-------------|----------------|--------------------|------------|----------|
|                           | File Run Window Help                                                                                                |              |           |               |             |                |                    |            |          |
|                           | i 🔆   💩   🛎 📕 🎽 🕅 🕨   ₩                                                                                             |              |           |               |             |                |                    |            |          |
|                           | Fit-                                                                                                                |              |           |               |             |                |                    | SE         | Table 🗸  |
|                           | Iters 100 🗢 Target 1.2 🗘                                                                                            | Header       | Time      | x4            | SE x4       | x8             | SE x8              | x11        | SE x11 🔺 |
|                           | Model Drive                                                                                                         | Time         | SE        | 4.0404        | 4.0404      | 8.08081        | <del>3.08081</del> | 11.11111   | 11.1111  |
|                           |                                                                                                                     | E1           | 0.0       | 3.05725260    | 1.0E-6      | 3.09628184     | 1.5E-6             | 3.12373743 | 1.5E-6   |
|                           | Kernel Background Times                                                                                             | E2           | 1.0       | 3.07532378    | 1.499999999 | 3.11788321     | 1.499999999        | 3.37839618 | 1.49999  |
|                           | Exponent Inverse Polynom                                                                                            | KKK          | 2.0       | 0.00298200    | 1.42E-4     | 0.00262817     | 1.35E-4            | 0.00248207 | 1.305E-  |
| Intensity values with the |                                                                                                                     | P_KKK        | 3.0       | 3.36/85888    | 1.55-6      | 0.44455290     | 3.UE-6             | 1.01075772 | 4.00000  |
| intensity values with the |                                                                                                                     |              | 5.0       | 0.03432677    | 0.05850650  | 0 10067342     | 0.05454449         | 0 17432846 | 0.0009   |
| corresponding standard —  |                                                                                                                     | DD KK        | 6.0       | 1.30193776    | 6.0E-6      | 0.00139286     | 6.95E-5            | 0.00424773 | 2.055E-  |
|                           | ++                                                                                                                  | к            | 7.0       | 1.24208287    | 0.05989750  | 1.02269297     | 0.05873800         | 1.17772457 | 0.05613  |
| errors (SE).              | Self Regulation                                                                                                     | РК           | 8.0       | 0.00106066    | 5.7E-5      | 0.01391098     | 7.06E-4            | 0.04633620 | 0.00219  |
|                           |                                                                                                                     | PP_K         | 9.0       | 0.0           | 1.0         | 1.63421023     | 8.50000000         | 0.00152726 | 8.5E-5   |
|                           | Table 🗸 🗸 O 🗘                                                                                                       | KPase        | 10.0      | 0.12199318    | 0.0059775   | 0.11166633     | 0.0057275          | 0.11357458 | 0.00520  |
| SE column can be hidden   |                                                                                                                     | P_KKK_KK     | 11.0      | 1.23317372    | 6.5E-6      | 2.21276279     | 1.10000000         | 2.25559811 | 1.35000  |
|                           | <u>E1</u> ● E4 E& K#R•K##₽ <b>∮K#</b> M#₽•K₽ M#£ <del>\$%C#MM#K#&amp;E5EE#FM#################################</del> | PP_KK_K      | 12.0      | 4.78586511    | 2.30000000  | 0.00514494     | 2.72000000         | 0.01561012 | 7.68500  |
| using the "SE" button     | К ККК                                                                                                               | KKPase_PP    | 13.0      | 0.0           | 1.0         | 0.0            | 1.0                | 0.0        | 1.0      |
|                           | ΣKK.                                                                                                                | KPase_PP_K   | 14.0      | 0.0           | 1.0         | 5.32821062     | 3.0E-6             | 6.40613020 | 2.95000  |
| from the local toolbar.   |                                                                                                                     | P_KKK_P_KK   | 15.0      | 0.0           | 1.0         | 2.11799427     | 1.00000000         | 3.71790448 | 2.00000  |
|                           |                                                                                                                     | E1_KKK       | 16.0      | 0.0           | 1.0         | 0.0            | 1.0                | 0.0        | 1.0      |
|                           | K R B KK                                                                                                            | PP_KK_P_K    | 17.0      | 0.0           | 1.0         | 6.81570453     | 3.5E-6             | 6.12453913 | 2.99999  |
|                           | A Pase PP KK                                                                                                        | EZ_P_KKK     | 18.0      | 2.02667162    | 1.0         | 7 56427020     | 4.00000000         | 9.07075390 | 5.05-6   |
|                           | E KKK-P-KK                                                                                                          | KKPase       | 19.0      | 2.95007102    | 1.35000000  | 2 18929163     | 1 100000000        | 1 84055799 | 9.5E-6   |
|                           |                                                                                                                     | KPase P K    | 20.0      | 4.30187251    | 2.25E-5     | 0.00577453     | 2.69000000         | 0.01566717 | 7.615E-  |
|                           | K Pase P KK                                                                                                         | N usc_i_N    | 21.0      | 1100101201111 |             | 01000111100111 | 2107000000111      |            |          |
|                           | KPase_P_K                                                                                                           |              |           |               |             |                |                    |            |          |
|                           |                                                                                                                     |              |           |               |             |                |                    |            |          |
|                           |                                                                                                                     |              |           |               |             |                |                    |            |          |
|                           |                                                                                                                     |              |           |               |             |                |                    |            |          |
|                           |                                                                                                                     |              |           |               |             |                |                    |            |          |
|                           |                                                                                                                     |              |           |               |             |                |                    |            | ~        |
|                           |                                                                                                                     | <            |           |               |             |                |                    |            | >        |
|                           | /<br>Memory: 500330760                                                                                              |              |           |               |             |                |                    |            |          |

### **Plot View**



## Inference Model Definition: Number of Terms



## Inference Model Definition: Inverse Model

Using the context menu of the Model table the default representation for the kernel function can be selected:

Inverse kernel function



## Inference Model Definition: Polynomial Model



## Inference Model Definition: Differential Model

Using the popup menu of the Model table the default representation for the kernel function can be selected:

> First-order, linear ordinary differential equations



## Inference Model Definition: Exponential Model



## Inference Model Definition: Power-Factors

Power-factors for any term of any kernel function can be adjusted using the corresponding spinner boxes.

If the power-factors differ from zero for two or three functions, these functions are combined in a product. For example, the kernel function defined by the given combination of the power factors takes the form:

$$w_{ij}(t) = u_{1,ij} \exp\{-(t/\tau_{e1})^{0.3}\} \times \{1 + (t/\tau_{i2})^{0.4}\}^{-1} + u_{2,ij} \exp\{-(t/\tau_{e2})^{1.6}\} \times t^{1.5}$$

Novikov E, Barillot E: Model selection in the reconstruction of regulatory networks from timeseries data, submitted to Algorithms for Molecular Biology.



## Inference Model Definition: Background Functions

The background functions can be defined similar to the kernel functions.



## Inference Model Definition: Characteristic Times

Characteristic times for the Exponential and Inverse kernel functions can be set using the corresponding spinner boxes.

The characteristic times are defined as  $\alpha^*T$ , where  $\alpha$  is taken from the table, and *T* is the measurement time range.

The number of times can be increased using the "++" button or can be decreased using the "—" button.



## Inference Model Definition: Characteristic Times Selection

If the number of characteristic times is larger than the number of kernel terms, all possible combinations of characteristic times are consequently substituted in the kernel function and fitting is performed for each tested link. The combination ensuring the best fitness value ( $\chi^2$ ) is preserved for this link.



## Forward Selection Stopping Criteria



### Initialization

🐐 NETI12 - D:\InWork\Software\Setup\WWW\_RE\demodata\MAPKDistorted.bin File Run Window Help 🍝 🔳 🗖 隆 🕨 ₩ đ 3 🗘 -Fih Plot ~ 1.2 🗘 100 😂 Iters Target E1 E2 KKKK 0.00035 0.0030 Model 0.0003 Prior 0.002 0.00002 0.00025 ernel Background Times Kinetics 0.0020 0.0015 inetics 0.000020 W.Res tics W.Res 00020 Re Exponent Inverse Polynom Ĕ. Press the "Init" button 1 0 0 0.0000 25 0.000 0 1 Π 0.000 0.0000 0.0000 from the Toolbar or select 0.0000 0.0000 0.000 ++ the Menu Item "Run|Init" Time Time Time Self Regulation 🔽 P KKK ю P KK (F3) to initialize the 1.25 0.40 Table 0 😂 0.00030 0.35 25 inference. 1.00 0.00025 0.30 X 0.0020 Kinetics 10 W.Res Kinetics 0.12 0.15 W.Res ≶ **E**KKK .Res The default (background) 0.00010 0.10 0.25 0.00005 behavior will be assigned to 0.05 0.0000 0.00 0.01 each node (red line). Time Time Time PP\_KK к ΡK 0.30 1.25 Gray line is the residuals: the 0.25 0.75 1.00 differences between the 0.20 (15 0.15 0.10 Kinetics Kinetics 10 W.Res Kinetics 10 W.Res W.Res experimental and reconstructed time series. O: x2 = 181.788; NP = 22; 0.25 0.2 0.05 0.00 0.00 0.00 0 10 20 Time Time Time Memory: 502249576

## Initialization: Interaction Table



## Initialization: Network Graph

The interaction table can also be presented as a network graph.



### Step-by-Step Inference

Network inference can be performed in the "step-by-step" mode, using the "Step" button from the Toolbar or the Menu Item "Run|Step" (F4).

At each step, the procedure selects the node with lowest fitness and finds another node, which can explain the behavior of the given node in the best way (ensuring the lowest  $\chi^2$  criterion value for the given node).



### Automatic Inference

Network inference can be performed in the automatic mode, using the "Run" button from the Toolbar or the Menu Item "Run|Run" (F5).

The procedure performs until the number of created links is higher than the *Iters* value, or until the  $\chi^2$  value is lower that the *Target* value.



### **Terminate Processing**

NETI12 - D:\InWork\Software\Setup\WWW\_RE\demodata\MAPKDistorted.bin File Run Window Help ● ■ ■ 除 ▶ | ₩ 3 🛟 -Fił Plot 🗸 E1 E2 KKKK 0.00035 0.0030 0.000030 Mode Prior 0.0003 0.0025 0.000025 0.00025 Kernel Background Times 20020 Kinetics inetics 0.000020 W.Res tics W.Res 5 1 00020 Re Exponent Inverse Polynom Ĕ. 0.0001 a ann 0.0001 -25 0.000 0.0000 0.0000 50 0.00000 0.0000 0.000 Time Time Time Self Regulation P KKK KK P KK 1.25 7.5 0.40 Graph 0 🗘 ¥ 0.00030 0.35 5.0 5.0 1.00 0.00025 0.30 P\_KKK\_P\_KK KPase\_PP\_K \* PP\_KK\_B\_K f E2\_P\_KKK f KKPase\_P\_KK Kinetics 0.0005 0 .Res Xinetics 120 120 120 Kinetics W.Res S Res 0.50 KKPase\_PP\_KK KKPase 0.00010 -25 0.10 -5.0 PP KK K KPase P K -25 0.25 0.00005 0.05 5.0 0.0000 0.00 0.00 P\_KKK\_KK 0 10 41 51 61 E1 Time Time Time KPase E2 PP\_KK к ΡK PP\_K ККК 0.30 20 1.25 30 PKKK 1.00 ΡК 15 0.25 • Р\_КК PP\_KK 1.00 Kinetics 0.10 0.20 0.15 0.10 Kinetics W.Res W.Res W.Res ^ 11: x2 = 35.901; NP = 44; 0.25 0.25 0.05 0.00 0.00 0.00 12: x2 = 27.75; NP = 46; 0 10 20 30 40 0 10 60 70 80 ~ Time Time Time Running NETI ...

Processing can be stopped by pressing the "Stop" button on the Toolbar or selecting the Menu Item "Run|Stop".

### Results



### Save Results

To save the results use the "Save Analysis …" button from the Toolbar or the Menu Item "File|Save|Save Analysis …" (Ctrl+S).

The results are saved as a list of links in the text file (importable into Microsoft Excel).



### Save Experiments

The whole experiment / (results, parameters, other settings) can be saved (using the Menu Item "File|Save|Save Experiment ..." (Ctrl+W)) in the internal (binary) format to be able to restore it (using the Menu Item "File|Load|Load Experiment ..." (Ctrl+R)) in the future to reanalyze the data.



### Set Batch Options

Using the Menu Item / "File|Set Batch Options", all settings can be saved to be applied to other data sets.



Adaptive Model Selection

## **Prior Links Table**

Prior links are defined in the "Links" table from the "Prior" tab.

The nodes to be linked are selected from the lists of measured nodes.

The number of prior links can be increased using the "++" button or can be decreased using the "—" button.

Only the selected links will be used for the adaptive model selection.



### Prior Links Use

If the "Auto Model" checkbox is selected the model selection procedure will be performed at the initialization.

If the "Inference" checkbox is selected, the prior links will be used not only for the model selection but also will be imbedded in the selected model for final reconstruction.



### Models Library

The models to be tested are defined in the "Template" table from the "Prior" tab.

Novikov E, Barillot E: *Model* selection in the reconstruction of regulatory networks from timeseries data, submitted to Algorithms for Molecular Biology.



## Models Template

The model is selected from the three implemented models: *Exponential, Inverse, Polynomial.* 

The number of terms for each model is defined by \_ the number of Power-Factors separated by spaces.

The corresponding characteristic times ( $\alpha$ ) should also be separated by spaces.

Only the selected models will be used in testing.



## Adaptive Model Selection

At initialization, the FS procedure uses consequently each of the defined models to reconstruct the network.

The number of correctly recovered prior links is counted after the number of iterations (NI) defined by the number of prior links (2, in this case).

If NI is not sufficient to unambiguously identify the best model, the NI is increased by one and the FS procedure starts again.

Novikov E, Barillot E: *Model* selection in the reconstruction of regulatory networks from timeseries data, submitted to Algorithms for Molecular Biology.



### Model Selection Result: Kernel

The model selection procedure, after testing the eight models defined in the "Template" table, selects the best model and copies the identification of this model into the tables "Kernel" and "Times" of the "Model" tab.

Kernel table



### Model Selection Result: Times

The model selection \_\_ procedure, after testing the eight models defined in the "Template" table, selects the best model and copies the identification of this model into the tables "Kernel" and "Times" of the "Model" tab.

Times table



## Network Reconstruction with the Selected Model



Network Simulator

### **Run** Network Simulator

To open Network Simulator select the Menu Item "Run|Simulator".



### Network Simulator Window

😤 Simulator NETI To start simulations press File Run Help -0 the "Run Simulations" Table 🗸 File Simulate button from the Toolbar ~ Network Structure Kinetics or select the Menu Item 20 🗘 Rate Law First Nodes "Run|Run Simulations" 1 🗘 Random Scale-Free Rate Range (F5). 100 🗯 p Link 0.05 Overflow 1,000 貪 Time Step 0.01 💲 Times 50 🛟 Permute Rows Out Times 0 🌲 Table × To simulate data the following parameters should be defined. Noise Type Proportional v 0.05 Noise-to-Signal -1 Seed < >

## Artificial Networks (I)

Simulation model is defined by a set of ordinary differential equations with either *first-* or *second*-order kinetic *rate laws*.

The rates of kinetic equations are randomly selected from the interval: [-*Rate Range*; +*Rate Range*].

Generated time series is rejected, if it exceeds *Overflow*; procedure tries to find the structure and kinetic parameters without the overflow.

|            | Caracteria and the second second |                   |             |       |
|------------|----------------------------------|-------------------|-------------|-------|
|            | Simulator NETI                   |                   |             |       |
|            | File Run Help                    |                   |             |       |
|            | • • •                            |                   |             |       |
|            | File Simulate                    |                   | SE Ta       | ble 🗸 |
| $\searrow$ | - Kinetics                       | Network Structure |             | ^     |
|            | 🔺 Rate Law First 🗸               | Nodes 20 🔵        |             |       |
|            | Data Dapas 1                     | Random Scale-Free |             |       |
|            |                                  |                   |             |       |
|            | Overflow 100 🤤                   | p Link 0.05       |             |       |
|            | Firmer 1 000                     | Time Step 0.01    |             |       |
|            |                                  |                   |             |       |
|            | Out Times 50 🗘                   | Permute Rows      |             |       |
|            | Table 💌                          | 0 🗘               |             |       |
| l: /       |                                  |                   |             |       |
|            |                                  |                   |             |       |
|            |                                  |                   |             |       |
|            |                                  |                   |             |       |
| <b>′</b>   |                                  |                   |             |       |
|            |                                  |                   |             |       |
|            |                                  |                   |             |       |
|            |                                  |                   |             |       |
| c I        |                                  |                   |             |       |
| 5          |                                  |                   |             |       |
|            |                                  |                   |             |       |
|            | Noise Type                       | Proportional 🛛 🔽  |             |       |
|            | Noise-to-Signal                  | 0.05              |             | ~     |
|            | Seed                             | -1                | <u>&lt;</u> | >     |
|            |                                  |                   |             |       |

## Artificial Networks (II)



## Artificial Networks (III)

Number of Time Steps (*Times*) and *Time Step* to generate idealistic time series.

*Out Times* defines sampling frequency. In this example, the original 1000-point time series are converted into 20 intervals of 50 points. At each interval the output time point is randomly selected.

Generation of the permuted data, i.e. when node labels are randomly assigned to generated time series.

| 6                |                       |      |       |   |
|------------------|-----------------------|------|-------|---|
| Simulator NETI   |                       |      |       | × |
| File Run Help    |                       |      |       |   |
| <b>→</b> = -0    |                       |      |       |   |
| File Simulate    |                       | SE T | Table | ~ |
| Kinetics         | Network Structure     |      |       | ^ |
| Rate w First     | Nodes 20              |      |       |   |
|                  | Random Scale Free     |      |       |   |
| Rate Range       |                       |      |       |   |
| Overflow 10      | 0 🗘 p Link 0.05 🔪     |      |       |   |
| Timer 1.0        | 00 A Time Shee 0.01 A |      |       |   |
|                  |                       |      |       |   |
| Out Times        | 50 C Permute Rows     |      |       |   |
| Table            | ✓ 0 I                 |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
|                  |                       |      |       |   |
| Noise Type       | Proportional          |      |       |   |
| Ivoise-to-Signal | -1                    |      |       | * |
|                  |                       |      | >     |   |

## Additive Statistical Noise

Model for the standard deviation of the additive noise. It can be constant, proportional to signal, or proportional to the square root of signal.

*Noise-to-signal* level for the additive statistical noise. This noise is finally added to each data point.

Seed for random number generator (selection –1 as a seed will initiate the random generator with automatically (or – randomly) chosen seed).

| 🚟 Simulator NETI                 |            |
|----------------------------------|------------|
| File Run Help                    |            |
| • •                              |            |
| File Simulate                    | SE Table 🗸 |
| Kinetics                         |            |
| Rate Law First 💙 Nodes 20 🗘      |            |
| Rate Range 1 2 Random Scale-Free |            |
| Overflow 100 p Link 0.05 C       |            |
| Times 1,000 🗘 Time Step 0.01 🗘   |            |
| Out Times 50 🗢 Permute Rows      |            |
| Table 💟 0 🗘                      |            |
|                                  |            |
|                                  |            |
|                                  |            |
| Noise Type<br>Noise Type<br>0.05 |            |
| Seed -1                          |            |
|                                  |            |

### SBML Modules (I)

Simulator can import some intermediate data, typically time series ~ generated by SBML modules.

The structure of the network can also be imported. It allows to compare the structure used in data generation with the structures obtained by the inference algorithm.

The structure can be defined by the *xml* or *txt* files.

| Simulator NETI                                                                                                   |              |          |
|------------------------------------------------------------------------------------------------------------------|--------------|----------|
| File Run Help                                                                                                    |              |          |
| ▶ <b>=</b> -0                                                                                                    |              |          |
| File Simulate                                                                                                    |              | SE Table |
| Data                                                                                                             |              |          |
| ▼ Structure                                                                                                      |              |          |
| ⊙ XML                                                                                                            | OTXT         |          |
|                                                                                                                  |              |          |
|                                                                                                                  | ľ            |          |
|                                                                                                                  |              |          |
| Out Times 50                                                                                                     | Permute Rows |          |
| Tabla                                                                                                            |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
| /                                                                                                                |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
|                                                                                                                  |              |          |
| Noise Type                                                                                                       | Proportional |          |
| and the second | 0.05         |          |
| Noise-to-Signal                                                                                                  | 0.05         |          |

## SBML Modules (II)

Imported model (MAPK).



### Export Data

To send the generated data in the Processing Window, use the "Send Data" button from the Toolbar or the Menu Item "File|Send Data" (Alt+ $\rightarrow$ ).

To save the generated data in the text file use the Menu Item "File|Save Data" (Ctrl+Shift+O).

To save the generated structure in the text file use the Menu Item "File|Save Data" (Ctrl+Shift+U).



### Simulated Data Downloaded

The simulated time series and the corresponding structure have been downloaded in the processing application.



### **Prior Links from Simulator**

All links from Simulator are, by default, assumed to be unknown.

All they can be included for the adaptive model selection using the Menu Item "All Used" from the context menu.



## Selected Prior Links from Simulator

Prior links can be selected manually using the check box field "Link" of the "Links" table.

Prior links can be selected randomly using the button "Randomize"; the number of selected links is defined by the corresponding spinner box.



### Multi-Run Simulations

Using the button "Runs" the simulation procedure with the follow-up processing is repeated 100 times to collect the statistics.

A different network structure, different link parameters, different time sampling and different noise realizations may be generated at each run.

If the properties of the network is defined by the external file (e.g. SBML) network structure, kinetic laws and kinetic parameters remained unchanged.

Different prior links are also generated at each run. The number of prior links is defined by the corresponding spinner box.



## Measured Statistical Characteristics

The collected statistical characteristics are the averaged dependencies on the total number of links, of: • $\chi^2$  criterion; •Positive Predictive Value: *PPV* = *TP/(TP+FP)*; •Sensitivity *Se* = *TP/(TP+FN)*;

The results in the log window:

•The selected models at each run: model numbering corresponds to the Template table;

Novikov E, Barillot E: *Model* selection in the reconstruction of regulatory networks from timeseries data, submitted to Algorithms for Molecular Biology.



### Save Statistical Characteristics

The statistical dependencies can be exported using the "Save Analysis ..." button from the Toolbar or the Menu Item "File|Save|Analysis ..." (Ctrl+S).

